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Recently, Razborov obtained superpolynomial lower bounds for monotone circuits that 
lect cliques in graphs. In particular, Razborov showed that detecting cliques of size s in a graph 

dh m vertices requires monotone circuits of size .Q(m-'/(log m) ~') for fixed s, and size rn ao°~')  for 
,. :[log ml4J. 

In this paper we modify the arguments of Razborov to obtain exponential lower bounds for 
,motone circuits. In particular, detecting cliques of size (1/4) (m/log m) ~'/a requires monotone circuits 
f size exp (£2((m/log m)~/:~)). For fixed s, any inonotone circuit that detects cliques of size s requires 
'm'/(log m)') AND gates. We show that even a very rough approximation of the maximum clique 
e of a graph requires superpolynomial size monotone circuits, and give lower bounds for some 
net Boolean functions. Our best lower bound fi~r an NP function of n variables is exp (f2(n w4. 

(log n)~/~)), improving a recent result of exp (f2(nws-')) due to Andreev. 

I. Introduction 

In 1949, Shannon  [14] showed that  a lmost  all  Boolean funct ions  have  expo-  
• n t ia l ly  large circuit  complexi ty .  Unfor tuna te ly ,  the  best circuit lower b o u n d  for a 
oblem i n  N P  is only  311 (Blum [4]). Circui t  lower bounds  are impor t an t  since a 

upe rpo lynomia l  circuit  lower b o u n d  for a p rob lem in N P  implies tha t  P ~ N P .  
Because lower bounds  for  general  circuits seem difficult to prove,  many  people  

have s tudied  rest r ic ted c i rcui t  models .  One  restr ict ion is to consider  only  monotone  
circuits,  wi th  A N D  gates and  O R  gates a l lowed bu t  no  N O T  gates al lowed.  Unt i l  
recently,  however ,  the  best known lower b o u n d  for the  m o n o t o n e  circuit  complexi ty  
o f  a single m o n o t o n e  p rob lem in N P  was a 4n lower bound  (Tiekenheinr ich  [16]). 
Wegener  [18] gave an O(n2/log n) lower b o u n d  for  s imul taneous ly  compu t ing  a set 
o f  .,z Boolean funct ions  (in N P )  o f  n variables .  

Recent ly ,  Razborov  [12] achieved a major  development ,  namely  ob ta in ing  su- 
p o l y n o m i a l  lower bounds  for m o n o t o n e  circuits.  F o r  a Boolean funct ion f ,  let 

. ~ ( f ) d e n o t e  the m o n o t o n e  circuit  complexi ty  o f f .  F o r  1 <=s<=m, let C L I Q U E ( m ,  s) 

~,e the funct ion  o f  n = l t ~  7] Boolean  var iables  
/ N 

representing the edges o f  an undi rec ted  
t z )  
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graph G on m vertices, whose value is 1 iff G contains an s-clique. In [12] Razborov 
shows that 

L + (CLIQUE(m,  s)) ~ m'(s3e" In m)-2s, 

and concludes that for fixed s 

(. ,-L ./ 
(1.1) L+(CLIQUE(m,  s)) = f2 (log m)~") ' 

a,,d t at ,'o,- "=14-- '' "1 
L + ( C L I Q U E  (,,1, .3)) = mS c, og,.>. 

Here we modify the arguments of [12] to improve the lower bounds. Our main 
results are exponential lower bounds for the monotone circuit complexity of  several 
Boolean functions. In particular we show that 

I [  m )(f2-,. i>/2 
L+(CLIQUE(m,  s)) ~ ~- .4s:~l~ log m 

and thus for s=  [(,,,/(8 log m))~/3J we have 

L + (CLIQUE(,, , ,  s)) = exp (Q((m/log m)'/s)). 

"Ihe method also supplies lower bounds on the monotone complexity of  Boo- 
lean functions that approximate the maximum clique size of a graph. For example, 

,¢ N 
Boole,~[n f u | , c t i o t ,  o f  f~ ~ ~'; '~ v a r i a b l e s  we show that if f is any representing the edges 

\ - - j  
of a graph G whose value is 0 ifG contains no clique of  size [(log m)~], is 1 ifG contains 
a clique of size [m/(8(log ,n):~)J, and i~ arbitrary otherwise, then 

L +(f) = m~Oog,,). 

We also improve (1.1) and show that for fixed s 

m s 

In fact, we show that any monotone circuit that computes CLIQUE(m, s) (for fixed s) 
contains at least O(m~/(log m) ~) AND gates. 

As mentioned above, our methods are basically a modification of  those appear- 
ing (without proof) in [12]; however, our paper is self-contained. 

Razborov obtains his lower bound for the monotone complexity L+(f) of a 
Boolean function f i n  the following two steps: 

(i) For every lattice K from a properly defined family of lattices, he defines 
the distance Q(f, K) from f t o  K and shows that 

(1.2) L+(f)  >= o(f, K). 

(ii) For a specific function f (e .g . ,  f = C L I Q U E ( m ,  s)) he defines an appro- 
priate lattice K and shows that ~o (f, K) is large. 

Our improved bounds are obtained by choosing different lattices in the second 
step, which are modified versions of  Razborov's lattices. 
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Very recently, Andreev [2] has obtained exponential lower bounds for the 
monotone circuit complexity of  several problems in NP. His methods are different, 
though very similar, to those of  Razborov. The best lower bound obtained by And- 
reev for a function of  n variables in NP is exp (f2(n~/8-O), whereas our best bound 
mentioned above is exp (Q(n~/~-0). We also note that the methods of  [2] do not 
seem to supply good lower bounds for CLIQUE(m, s) for fixed s. Applying Raz- 
borov's methods together with our ideas to one of  the functions g of  n variables 
considered by Andreev, we can improve Andreev's lower bound and show that 
L +(g) = exp (f2 (n ~14 • (log n)1/'2)). 

The paper is organized as follows. In Section 2 we describe the relatively easy 
step (i) mentioned above, including Razborov's proof  of  inequality (1.2). In Section 
3 we obtain, using an appropriate lattice, exponential lower bounds for the mono- 
tone complexity of  the clique function. In Section 4 we obtain the exp (~2(n ~/~, 
• (log n)U~)) for Andreev's function g. Section 5 contains lower bounds for the 

monotone complexity of  some other Boolean functions. 
Throughout  this paper, the function log x denotes logarithm base 2 of  x, 

whereas In x denotes logarithm base e of x. 

2. Monotone colnplexity and latlices 

For n _  >- 1, let B, denote the n-dimensional cube {0, 1}". Let P(B,) denote 
the power set of B,.  The power set P(B,,) is a lattice with respect to union and inter- 
section. Let A a =c P(B,) be the sublattice of P(B,) consisting of all monotone families 
of  vectors in B,,  i.e., ~ is the set of  all FC=B,, such that 

V uE FV vE B,[u ~ v ~ vE F]. 

For a monotone function f of  n Boolean variables, put A ( f ) =  { rEB, : f (v )= l} .  
Clearly i f f  is a monotone function, then A(f)~A¢, and i f f  and g are monotone 
functions, then A( fVg)=A( f )UA(g )  and A(fAg)=A(f )NA(g) .  

A subposet K of  A ° is a legitimate lattice if 
(i) it is a lattice (i.e. every pair M, NEK has a join, denoted by M u N ,  

and a meet, denoted by M ~ N ) ,  and 
(ii) A(Xl), A(x2) .. . .  , A(x,), A(0)(=0) ,  A(1)(=B,)E K. 

For M, NEK, define 6 ~ ( M , N ) = ( M t A N ) - ( M U N )  and 3 ~ ( M , N ) =  
= ( M N N ) - - ( M ~ N ) .  

For a monotone function f a n d  a lattice K, the distance f r o m f t o  K is the mi- 
ninmm t such that there are M, Mx, N~ . . . . .  M~, NtEK satisfying 

t 

(2.1) M ~ A ( f )  U U 6 = (Mi, N~) 
i = 1  

and 
t 

(2.2) A ( f )  G M U U 6n (M~, N~). 
i=1  

Denote this distance by 0(f ,  K). 
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Theorem 2.1 ([12]). For erery monotone function l a n d  ereiy legitimate lattice K, we 
have L+(f)>= o(f, K). 

Proof. Put t =  L+(f) and consider a monotone straight-line program P for comput- 
ing fus ing  t operations (each of  which is either an V or an A), Let .[i and gi be the 
operands of the ith operation, for 1 > i:~ t. 

Let M be the element of K obtained by running the program P in K, replacing 
each V by El, each A by [~, each xl by A(xl), each 0 by A(0), and each 1 by A(1). 
Similarly, let M~ and Ns be those elements of K obtained by rmaning the parts; of P 
for computing j] and gi, respectively, in K. We prove, by induction on t, that (2. l) 
and (2.2) hold. For t=0 ,  ./'is either x; or 0 or 1, and M = A ( f )  so the result is triv- 
ial. Assuming the result for t - 1 ,  we prove it for t. Suppose, for example, that 
f=f ,  Vg,. By the induction hypothesis, 

t - - [  

M, .c__. A ( f )  U U 6~ (M~, N~) 
i = 1  

and 

Therefore 

which is (2.1). 

and 

Thus 

t - -1  

N t '~ A (g,) U U 6u (M~, N,). 
i = 1  

M = M, uN ,  = M, UNtUD~(M,, N,) 

A (Jl) U A (g,) U 0 a = (M,, N,) 
i = 1  

= A (f)  U [~ 6u (M~, N,), 
i : 1  

Equation (2.2) is even easier to prove in this case. By the induction hypothesis 

t - -1  

A(.£) ~ M, I I J 6.(M,.,N,) 
i = t  

t - 1  

.4 (g,) % N, U U an (M,, N~). 
i = 1  

t - -1  

A (f)  = A ( f )  U A (gt) ~ AI, U N, U U g~-, (M,, N,) 
i = 1  

which is (2.2). 

~--i t 

c= (M, t~ N,) U U 6 n (Mi, Ni) c M U U • ~ (M,, Ni), 
i = l  i = 1  

The case f=f ,  Ag, is proved similarly, so the proof is complete. (Notice tl,at, 
the proof actually implies a slightly stronger result, namely: 

M C = A ( f )  u u { a = ( M I ,  NI): 1 ~_i~-t,  the i th  operation is an V}, 
and 

A( f )  c=MUU{an(Mi,  Ni): I ~ i :"-- t, the ith operation is an A}. 
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3. The clique problem 

3.1. The lattice 

In this section we define a legitimate lattice K such that ~(CLIQUE(m, s), K) 
is large. This will supply, by Theorem 2.1, lower bounds for the monotone circuit 
complexity of  CLIQUE(m, s). As mentioned above, our lattice is only a modifica- 
tion of  the lattice given in [12]. Throughout this section, we always assume that m 
is large enough (e.g., assuming m =  > 1000 is sufficient for all our purposes). 

Let l ~ 2  and r be numbers to be chosen later. For not necessarily distinct 
sets IV, W1, W~ . . . . .  W,, we say that W1, Wz . . . . .  W, imply W (and write W1, W2 . . . .  
..., W~ ~ W) iff 

(i) The sets W, W1, W2 . . . .  , Wr all have cardinality at most l, and 
(ii) W~NWjG=W for all l<=i<j<=r. 

Notice that if WIc=w and [W[<=/, then r copies of  W1 imply W. I f A  is a 
collection of  sets and W is a set, we say that A implies W (and write A k-W) iff 
there exist W~, W2 . . . . .  W, EA that imply W. A collection A is closed iff VW[A ~- W==~ 
~WEA].  The closure of  a collection A, denoted by A*, is given by A*= N{B:A c= 
c=--B and B is closed}. One can easily check that * is a closure relation (i.e., AC=A*, 
A C_B implies A*C=B*, and (A*)*=A*). 

For  a technical reason, it is convenient to assume, in this section only (and not 
in Section 4), that if A is a closed set having a member of  cardinality 1, then it also 
has the empty set as a member. Thus in this section we agree that A t- 0 if there is a 
set I, VEA such that [W]=I .  

Put V = { 1 , 2  . . . . .  m}. Our n--[~ } Boolean variables xl,x2 .. . . .  x, corre- 
1 %  

spond to the edges of  a graph on V. For a collection A of  subsets of  V, let [A] denote 
the family of  all graphs on V that contain a clique on some WEA. Each such graph 
is represented by a characteristic vector on the set of  n possible edges, i.e., by an 
element of  B,. Thus [A] is an element of  the lattice 0o9 °, defined in Section 2. Set 
4 / ( l )= {We:- V:IWI:~ l}. Finally define K(m, r , / ) =  {[A]:A is a closed subset of  

The following lemma asserts that K(m, r, l) is a legitimate lattice. We omit its 
straightforward proof. 

Lemma 3.1. K is a legitimate lattice in which the join ~5 and the meet Y] are given 
by [A]Lj[B]=|(AUB)*] and [A]~[B]=[ANB|. I 

3.2. Some combinatorial lemmas 

Let ~ be a family of  sets. We say that ~ has property P(r, k) if 
(i) every set WE~- has cardinality at most k, and 

(ii) there are 11o (not necessarily distinct) W, W1, W2 . . . . .  WrEn- and U+C W 
such that Wi (] Wj c= U for all 1 _<- i<j<= r (i.e., ~ I- U). 

Let h(r, k) denote the maximum possible cardinality of a family ,~- that has 
property P(r, k). 
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Lemma 3.2. For all r>=2 and k~O, we have h(r, k ) = ( r -  1) k. 

Proof. We first show that h(r, k)->_-(r - 1) k. Let S~, So, ..., Sk be k pairwise disjoint 
k 

sets, each of  cardinality r - l .  Define o ~ = { W ~  t.J S~: Vi[W(~S~I=I}. Clearly 
i = 1  

I~1 = ( r -  1) k. One can easily check that ~ has property P(r, k). Indeed if W, Wa, 
W2, ..., W r E~  and Uc~W, then U~S~=O for some i with l<=i<=k. But since 
]Si[=r- l ,  there are, by the pigeonhole principle, some l~p<q<-r  such that 
W~fl)WqOS~¢O. But this means that I.V~f)Wq~U, so ~- has property P(r,k). 

We next prove that h(r, k ) ~ ( r -  1) ~ by induction on r. For r=2 ,  the result 
is trivial; for if -~ contains two sets W~ and W~, define U= WI~  W~. Either U ~  Wz 
(and then take W=Wa) or U~W,,  (and then W=W~), so .~- does not have prop- 
erty P(r, k). 

Assuming the result for r -  1, we prove it for r. Let ~ be a family of sets having 
property P(r,k). We must show that ]-~]-=-(r-1) ~. Suppose D~,~.  For each 
C c_ D, put 

,~c = { W - C :  W £ ~  and WA D = C}. 

We claim that ~-c has property P ( r -  1, k-[C]). Indeed, suppose W', W;, W~ .. . .  
.... W;-~E,~c and U'c__-W" satisfy W'~-IW}c=U" for all l = = i < j ~ r - l .  Let 
W = W ' U C  and U = U ' C I C ~ W .  Define WI=W~UC (for l = 2 i ~ r - l )  and 
W,=D. This system satisfies Wif~Wjc=U for all l~ i -<j~r ,  contradicting the 
fact that ~- has property P(r, k). Thus ,~-c has property P ( r -  1, k-ICI) .  The induc- 
tion hypothesis says that I ~ c l ~ ( r - 2 )  k-lcl, hence 

I.Yl = Z l:-bl -~- Z (r -2)k- lc l  
cEo CC_m 

= T ( r - 2 )  k-; ~ r - 2 )  l'-; 
i = 0  i = 0  

= (r - 1) k. 

This completes the proof. | 

Corollary 3.3. Let A be a closed set. Then for all k ~ l  there are at most ( r -  1) k 
minimal elements (with re~7)ect to con taim77ent) of A of cardinality at most k. 

Proof. Let ~- be the family of minimal elements of A of  cardinality at most k. 
Clearly ~- has property P(r, k). Indeed if W, WI, W2, ..., WrY5 7;" and U ~ W  
satisfy W i f ~ W j ~ U  for all l~-i<j~_r, then WI, W2, . . . ,W,~-U. 3thus U~.A 
since A is closed. But UEA contradicts the minimality of  W, so Y must have prop- 
erty P(r, k). The result now follows from Lemma 3.2. (The construction given in 
the proof  of  Lemma 3.2 can be used to show that Corollary 3.3 is best possible.) 

We now show that for every collection of sets C, the closure C* can be con- 
structed from C using a reasonably small number of operations. For a collection C, 
put C ' = { W ¢ C :  Ct-W}.  Notice that C'=O iff C=C*, but that in general C" 
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need not equal C * - C .  Consider the following algorithm for going fi'om C to C*: 

algorithm Closure (C) 
C o ~ C  
i~O 
while Ci not closed do 

Wi+l*-any minimal element of  C~ 
CI+I--C~tS{W: W~+lc=W and IWI~I} 
i - , - i+l  

end while 
output Ci 

end algorithm 

Clearly, since everything is finite, the above closure algorittm~ nmst terminate 
and produce C*. In fact, for the lattice of subsection 3.1, since each Wi is distinct, 

the number of  iterations is bounded by ['¢~(l)[= [kj-=-m. Below we give a 
k = 0  ' 

more complicated argument (Lemma 3.5) which improves this bound. Although the 
weaker bound is sufficient for all out" purposes, the stronger bound may be useful 
sometimes. 

A family of t sets W1, W2 . . . . .  W, is called a sunflower with center W and t 
petals W~, W2 . . . . .  W, if W~OWa=W for all l<=i<j<-_t. ~Ihe following result was 
proved by Erd6s and Rado. 

Lemma 3.4. ([6]). Let o~ be a.fi,.nily of  sets, each of cardinality at most l. I f  [~1> 
> l ! ( t - 1 )  z, then o ~ contains a sunflower with t petals', | 

Using the Erd6s--Rado result, it is not too difficult to show that for every 
collection C, the closure algorithm terminates after at most l ! ( r+l )  t iterations, 
since the system {W~, W2 . . . . .  Wp} defined in the algorithm cannot contain a sun- 
flower with r + 2  petals. We can in fact improve this bound using similar arguments 
to those used in the proof  of  Lemma 3.2. 

Lemma 3.5. For every collection C, the closure algorithm terminates after at most 
2/i terat ions.  

Proef. Let S=-(W~, W2 . . . . .  Wp) be a sequence of  distinct sets. We say that S 
has property T(r, l) if  

(i) every set W~ has cardinality at most l, and 
(ii) there are no i~i2<= ...~-i,<i,+a and UcW.~ ir+l such that W~jOW.,~:c 

~ U  for all l ~ j < k < r  (i.e., W~, W~,~ . . . . .  Wi ~-U). 

Notice that if S=(Wa,  W2 . . . . .  Wp) is the sequence of Wfs produced by 
our algorithm for obtaining C* from C, then S has property T(r, l), since otherwise 
we get a contradiction to the minimality of  W~+~ when it was added, q herefore, to 
prove Lemma 3.5, it sul~ces to prove: 

Claim: Suppose r>= 1 and l ~  . I f  S=(W1,  W . . . .  , Wp) has property T(r,l),  
d~en p ~ 2/ .  

Proof of Claim. By induction on r. Consider first the case r--1.  Suppose that S 
has property T(1, l) and p >2 .  Notice that I,~l- 0, since r =  1 makes ~- trivial. 
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Since the W i are distinct, either W2 or W3 is nonempty. But if W2 ~ 0, then W1 I-- 0 
~Wo., contradicting the assumption that S has property T(I,  l). Similarly Wa~0 
contradicts S having property 7"(1, l). qhis proves the claim for r =  1. 

Assuming the result for r -  1, we prove it for r. Suppose S=(W1, W~ ..... W v) 
has property T(r, l). Put D =  W1. For each C ~ D ,  let Sc be the sequence of  all 
sets W~-C such that W~CqD=C, appearing in the same order that the Wi appear 
in S. As in the proof  of Lemma 3.2, it is easy to check that Sc has property 
T(r-1, l-lCI). By the induction hypothesis [ S c [ ~ 2 ( r - 1 )  t-tcl, and tiros 

ISI = Z IScl ~ 2 ~ '  (,. ,~ 2ft. 
CC2- D i = 0  

This completes the proof. | 

We conclude this subsection with two probabilistic lemmas. Recall f iom 
Section 3.1 that V={I ,  2 . . . . .  m}. By a random g-coloring O of  V, we mean a 
random choice of  one of  the g" possible colorings of V using the colors {1, 2 . . . . .  g}, 
where each such choice is equally likcly. We say that Wc=V is properly colored 
(PC for short) by O if each vertex of W has a different color. 

Lemma 3.6. Suppose that A ~¢/'(l) and A F- W. Let 0 be a random g-coloring of V. 
Then 

Pr[WisPCbyOandnose t inAis  PCbyO]----(1 g ( g - l ) . g ( g - I  / - I ) ) ' .  

Proof. A ~-W means that there are I~, t,V~ . . . . .  W~(A such that W~, I,~, ..., W~t- 
t- W. We have 

Pr[W is PC and no set in A is PC] < 

Pr[W is PC and W1, W.~ . . . . .  W, are not PC] 

~- Pr[Wt, l,~i~, ..., W~ are not PCIW is PC] 

= i [  Pr [W~ is not PC[W is PC], 
i=1 

where the last equality holds sincc, by the definition of  the implication W~, W,, .... 
.... W~-W, the events {W~ is not PC[W is PC} are mutually independent. Let 
p~=IW~f~WI and q~=lW~-WI. Clearly pi+q~=lWl~l, so 

Pr[Wi is not PC[W is PC] = l - P r [ W i  is PC [W is PC] 

= 1 - (g--P')(g--pi--1)'"(g--Pl-q~+ 1) 
gq~ 

1 -(g-P') (g-P'- -1) . . .  ( g - l+  1) 
gt -v l  

1-  g(g-1) . . . (g-- l+l)  
ol 

This completes the proof. II 
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For a g-coloring O of  V, let G(O) denote the complete g-partite graph on V 
whose edges are all pairs {i,/} with O(i)#O(j ) .  

Lemma 3.7. Suppose CC=~/'(l), and let 0 be a random g-coloring o['V. Then 

(l g(g- 1).. (g- l+ 1))'. 
Dr [G(O)~[C*I-[C1] (2 / )  gl ) 

Proof. Consider the closure algorithm for obtaining C* from C, defined just before 
Lemma 3.5. By Lemma 3.5, the algorithm must halt after p<=2r t iterations Now 
G(O)¢[C*]-[C] means that some set in C* is PC by O but no set in C is PC by O. 
qhis is equivalent to: some W~ of  the algorithm (for 1-<_i:~p) is PC but not set in 
C is PC. ~[his in turn is equivalent to the disjoint union of  the p events (for 1 -<- i~p)  

Ei = Wi is PC and no set in CU {W~, 14/2, ..., W,._~} is PC. 

The definition of  the algorithm implies that C©{W~, W o . . . . .  Wi-a}k-Wi, so by 
Lemma 3.6, we have 

Pr[&] ~ (1 g ( g -  1) .., ( g - /  gf + 1 ) ) ' .  

Hence 

as required. I 

P 

Pr [G(O)C:[C*I-[CI] = ~ Pr [E,] 
/ = l  

~ p ( l  

:~ 2r L (1 

g(g-l) ... ( g - l +  I))" 
gl ) 

g ( g - l )  ... (g- t+  I)]" 
gl j 

3.3. The exponential lower bound 

Recall that CLIQUE(,,,,  s ) i s  the function of  n=| '2 '  | Boolean variables, 
\ - - /  

representing the edges of  a graph on V= {1,2 . . . . .  m}, whose value is 1 iff G con- 
tains an s-clique. 

Suppose 3<=s<= 4 (m/log m) 2/a, and let l= [l/s] and r= [4t /s log m]. Lemma 3.8. 

Then the distance from f = C L I Q U E ( m ,  s) to the lattice K= K(m, r, l) satisfies 

o ( f , K )  >- 8 1 , ~ )  >-- 8 4s~/21ogm " 

Proof. Let t=o( f ,  K). We must show that 

I ( , ,  ~,(,-~,>I~, 
(3.1) t >= -~ t , ~  ) I . 
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By the definition of  ~(f,  K), there are M, M~, N~ . . . . .  M t, N ~ K  such that (2.1) 
and (2.2) both hold. Put M =  [A], where A is a closed subset of"F'(l). We consider 
two possible cases. 

Case 1. M is not the set o f  all graphs. 

Notice that by (2.2), each s-clique must belong to MU  U 6t j(M~, Ni). 

To prove (3.1), it is clearly enough to prove the following two claims: 

most one-half o f  the [ 7 )  possible s-cliques. Claim 1. M contains at 

Claim2. Each 6rn(Mi, Ni) contains at most 4.(s(r-1)/m)r(t+l)/21.["~] of the 
\ , - ]  

cfiques. 

Proof of Claim 1. Notice that since M is not the set of  all graphs, each element of  A 
has cardinality at least 2. Each s-clique that belongs to M contains some minimal 
element of  A. By Corollary 3.3, for each 2 :~ k_< l, the number of  minimal elements of  
cardinality k of  A is at most ( r - 1 )  k. Each such element is contained in precisely 

m -  ~1 s - k )  of  the s-cliques. Thus the total number of  s-cliques that belong to M is 

( , ._ l)k [ m - k  < ( , . - l )k  
k = 2  ~, S - - k  = k = ~  S 

at most 

= (°'1 I 
S Jk=2  K-~l l  / 

S ]k=~  

] m 

Proof of Claim 2. Put Mi=  [A~] and Ni = [Bi], where Ai and B i are closed subsets 
o f ~ ( l ) .  By Lemma 3.1, 

6 n (M~, N¢) = (Mi ~ N~) - (M, ~ N~) = [A,] A [B,I - [A: 0 Bi]. 

Thus if an s-clique on a set Z of  vertices belongs to 6~(Mi, Ni), then Z contains a 
minimal element XCAi and a minimal element YEB~, but no element of  A~f-IB~. 
If  IXUYI~I ,  then, since A t and B~ are closed, the set X U Y C _ Z  is an element of  
AICIBI, which is impossible. Thus IXUYI>I  , so either X or Y (or both) have car- 
dinality at least [(/+ 1)/2]. We therefore conclude that each s-clique belonging to 
6n(Mi, Ni) contains a minimal element of  cardinality k>=[(l+l)/2] of  either A i 
or B~ (or both). By Corollary 3.3, the number of  such elements is at most 2 ( r -  1) k, 

(,,,-k) 
each of  which is contained in I s - k )  of  the s-cliques. Hence the total number of 
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s-cliques that belong to 5n(M~, N~) is at most 

( 2 ( r - l )  k m - k ]  k 
~=r(z+l):~, s - k )  ~ 2 [ m l  

~, $ ] k=fU+l)121 

_~ 2(?)(S(~--l)) f ' I+l)]2]i£(1}i  

= 4 (~ ) rC~+a) / "4  ( m ) .  

This completes the proof of Claim 2, and thus the proof of Case 1. I 

Case 2. M is the set of all graphs. 
t 

In this case, by (2.1), every ( s -  1)-partite graph on V belongs to U 5a(M~, 

Ni), since these graphs do not contain any s-cliques. Put M~= [Ad and Ni= [B d, 
where Ai and B i are closed subsets of~(/) .  By Lemma 3.1, 

6~(M~, N~) = (M~u N~)-(M~U Ni) = [(A~U Bi)*I-([AdU[B~I) 

= f(A i U Bi)*l - [Ai U Bil = [C*I - [ Ci], 

where C~=A~UB~ for l~i<-t. Suppose that t violates (3.1), i.e., suppose 

l (  Irt / [('+1)/21 
t < T ~ )  < ..,rca. 

Let O be a random (s-1)-coloring of V. Then G(O) (defined just before Lemma 3.7) 
is a complete ( s -  1)-partite graph. By Lemma 3.7, for each fixed i such that 1 ~ i_  -< t, 
we have 

er[G(O)c:rc;g-[Cil] <= (2rt)(l (s-1)(s-Z)'"(s-[1/s]).) " 
( s -  1)r¢4 

mrCa(2) r4¢T'°g'l 

<_- mrg;1 m-  2 r ~  

Thus 
= m - l I G 1 .  

Pr[G(O)E U ([C[]-[C,])] <-_ tm-r¢~ < 1, 
i=1 

t 
so there is some G(O) that does not belong to U ([C~]-[Ci])= 0 5u(Mi, Ni). 

i=1 i ~ l  
t 

But this is a contradiction, since each ( s -  1)-partite graph must belong to U 5~ (M~, 
i=1 

N~). Hence (3.1) holds, and the assertion of the lemma follows. I 
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Combining Theorem 2.1 with Lemma 3.8, we get the following theorem. 
-~ < 1 

Theorem 3.9. I f  3 ~ s =  ~(m/log m) 2/a, then 

l {  ,,, )(1/;+a)/2 I 2(,7+1)/~ 
L+(CLIQUE(m, s)) ~ " 4sa/Z]-og m > 8- " 

I 1 n particular,fi)r s =  [~- (m/log m) 2/3] the monotone circuit complexity of  CLIQUE (m, s) 

is exp(a((m/log m)'/:')). I 

3.4. Approximating the maximum clique size 

Theorem 3.9 says that a monotone circuit must be large to distinguish be- 
tween graphs with maximum clique size less than s and graphs with maximum clique 
size at least s. In this section we show that, for sl~s.,., a monotone circuit nmst be 
large to distinguish between graphs with maxinmm clique size less than s~ and graphs 
with maximum clique size at least s2, even for some s'~>>.h. 

For 1 J: s~-~ s,,~ m, let F(m, s~, s,,) denote the set of  all monotone functions f 

o f [ ~  71 Boolean variables representing the edges of  a graph G on V = { I , 2  . . . . .  m}, 

such that the value of f is 0 ifG contains no clique of  size .h, is 1 i fG contains a clique 
of  size sz, and is arbitrary otherwise. Notice that F(m, s, s)= {CLIQUE (m, s)}, 
but that for s~<s., we have IF(m, sa, se)l> 1. 

Lemma 3.10. Suppose f~ F(m, s~, sz), where 3,~ s, < s2 and l/Th-~.%N m/(8 log m). Let 
l= r l / ~  and r =  [4 t/.~ log m]. Then the distance from f ro  the lattice K=K(m,  r, 1) 
satisfies 

Q(f,K) = - S t s . , ( , . _ l )  8 41/~s~logm 

Proof. The proof is very similar to that of  Lemma 3.8. Let t = 0 ( f ,  K). We must 
show that 

D1 -~ [(t-t- 1)/~1 

(3.2) t ~ l  (.s~(rL l) ) l 

<2'-~:S By definition of  ~(f,  K), there are M, Mi, and N ~ K  (for 1 = t =  t) for which con- 
ditions (2.1) and (2.2) hold. Put M=[A],  and for l=<ixt  put Mi =]-Ai] and 
Ni = [Bi], where A, Ai, and B i are closed subsets of't/'(/). We consider two possible 
cases. 

Case 1. M is not the set of  all graphs. 

By (2.2), each s2-clique belongs to MU ~) fin (Mi, Ni), so (3.2) will follow 
i = 1  

from the following two claims: 

[m / possible s,,-cliques. Claim 1. M contains at most one-half of  the s2 



COMPLEXITY OF BOOLEAN F U N C T I O N S  ] 3 

Claim 2. Each 3r~(M~,Ni) contains at most 4.(s,,(r_l)/m)r(z+x)/21.lm|t a sz of  the 
possible so-cliques. 

The proofs of  these two claims are analogous to those given in the proof of 
Lemma 3.8. This completes the proof  of  Case 1. 

Case 2. M is the set of  all graphs. 

In this case, by (2.1), every complete (s~-1)-partite graph on V belongs to 

the set U 3u(M~, N3. The proof  that t satisfies (3.2) for this case is identical to 
i = l  

the one given in the proof  of  Lemma 3.8. 1 

Lemma 3.10 and Theorem 2.1 imply the following. 

< m), Theorem 3.11. I f  fC F(m, s~, sz), where 3 = si =. 2 and m/(8 log then 

m, (¢~, +~)/, 
L+ ( f )  >= 4 l/~s2 log m 8 

We specify a special case of  the last theorem separately. 

CorMlary 3.12. Let f be a monotone function of  (';') Boolean variables rep,'esenting 

the edges of  a graph G on V= {1, 2 . . . .  , m}, and suppose the value o f f  is 0 i f  G contains 
no clique of  size [(log n04J, is 1 i f  G contains a clique of  size [m/(8 (log m)z)], and is 
arbitrary otherwise. Then the monotone circuit complexi O, o f f  is m n0°~"), i 

3.5. Small cliques 

For fixed s=>3, as m ~ ,  Theorem 3.9 can be improved using the lattice 
K(m,r , l )  with / = s -  1 and r=cse slog m (for some constant c>0) .  This (with 
c =  2) is precisely the lattice used by Razborov in [12] to show that for fixed s 

[ /9l s 
(3.3) L+(CLIQUE(m,  s)) = f~[- 

(log-m)2~)" 

Notice that L+(CLIQUE(m, s))= O(m'), and thus (3.3) is not far from best possible. 
In this section we improve (3.3) by replacing (log in) ~ by (log m)'L In fact, we show 
that, for fixed s=>3, every monotone circuit computing CLIQUE(re, s) contains 
f2(m~/(log m) 0 AND gates. 

Lemma 3.13. Define l = s - 1 ,  and let M and N be two elements of  the lattice K=.  
= K(m, r, l). Then the number of  s-cliques containedin fir (M, N) is at most 2". ( r -  1) s. 

ProoL Suppose M =  [A l and N =  [B1, where A and B are closed subsets of  3e'(/). 
By Lemma 3.1, we have 

n (M, N)  = (M N N ) - (M F1 N)  = [A ] N [B1 - [A (-I B]. 
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If  an s-clique ou a set of vertices Z belongs to an(M, N), then Z must contain 
a minimal element XCA and a minimal element YEB, but no element of  ANB.  
Hence [XUYI=s, for if IXUYI<=s-1, then XUYC=Z would be an element of  
A NB, which is impossible. Therefore the number of s-cliques in an(M, N) is at most 
the number of pairs (X, Y), where X is a minimal element of  A and Y is a minimal 
element of B such that IXU Yl=s. Given a minimal element X of  A, define ~ x  = 
= { Y : Y  is a minimal element of  B and ]XUgl=s}.  For Co=X, put a 'x ,  c - ~  - 
= { Y - C : Y ~ , ~  x and X N Y = C } .  One can easily check that ~x , c  has property 
P(r, s-IX[),  defined in the first paragraph of  subsection 3.2. Indeed, if W, W~, W~ . . . .  
.... W,(JTx,c and U ~ W  satisfy W~NWsC=U for all l~i<j<-r,  then W~UC, 
W2UC .. . .  , W, UC~-UUC. But this implies that UUCCB, contradicting the 
minimality of  WUC~B.  Hence, Lemma 3.2 says that ] ~-x, cl-<_(r - 1) ~-[xl, and 
thus I~xl~21xl • ( r -  1y-IXl. By Corollary 3.3, the number of  minimal elements X 
of  A of  cardinality k is at most ( r -  1) ~. Thus the total number of pairs (X, Y) of 
the required type is at most 

s--1 s - -1  

Z (r - 1)k(2~(r - 1) ',-k) = ( r -  1) ~ Z 2~ 
k =1  k = l  

< 2~(r _ 1) -~, 
and the proof  is complete. | 

Lemma 3.14. I f  3 ~ s-~ 1 log m, then e~:ery monotone circuit that computes the fimc- 

tion CLIQUE(m, s) contains either at least m'V(8sM ~ log m) ~ AND gates or at least 
m "~ OR gates. 

Proof. Let t, and t~ denote the number of AND gates and OR gates, respectively, 
in a monotone circuit that computes f = C L I Q U E ( m ,  s). Set K=K(m, r, I), where 
l=  s -  1 and r =  [4se ~ log m]. By the proof  of Theorem 2.1. there are M, M~, Na, ... 

M,~+t., N,,+t ~K such that " ' ' '  2 

(3.4) A ( f )  c= M U  0 6 ~(M,, N,), 
i = 1  

and 

(3.5) 

Consider two possible cases. 

Case 1. M is not the set of  all graphs. 

M _G_ A ( f )  U qU"~t 6~ (M~, N~). 
i = t l + l  

In this case one can easily check, as in the proof  of  Lemma 3.8, that M con- 
tains at most one-half of  the possible s-cliques. Hence, by (3.4) and Lemma 3.13, 
we have 

m., 

t 1 ~ "~- 2"(r - 1)') ~ s~(2r)~, _> (8s2eS log m)" ' 

and Case 1 is settled. 

Case 2. M is the set of all graphs. 
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tz- t - t  ~ 

In this case, by (3.5), every ( s -  1)-partite graph on V belongs to U 6,n(Mi, 
i = t l + l  

Ni), Put Mi=[Ai] and Ni=[Bi] , and let C i = A i ~ B  i for q+l=t=tx+to .  
Then, as in the proof  of  Theorem 3.8, we have 6u(M i, N3=[C*I-[Cd. Let O 
be a random ( s -  1)-coloring of  V. By Lemma 3.7, for each fixed i satisfying tx+ 1~ 

iN ta + t,, we have 

l" Pr[G(O)~IC~I-[C,I] ~ (2r') 1 ( ~ - = , )  

m~(l - e - ~ f  ~ m -3~ 

t l  + t ~ 

I f  t.,<m a', then Pr[G(O)C [.J ([C~[1-[Ci])]'~t2m-3~<l, so some G(O) does 
i = t  I -I-1 

t I + t~ 
not belong to ~) 6,2(M~, N~). But this is impossible, since G(O) is an ( s - l ) -  

i = t z + l  

partite graph. Thus t~, the number of  OR gates in the circuit, is at least m 3~, complet- 
ing the proof  of  the lemma. | 

The next simple lemma is interesting in its own right, showing that the number 
of AND gates and OR gates in a circuit can always be somewhat balanced, without 
increasing the complexity of  the circuit. For example, exponential lower bounds on 
monotone circuit complexity imply exponential lower bounds on both the number 
of  AND gates and the nmnber of  OR gates required. 

Lemma 3.15. Let f be a monotone function of  n Boolean variables, and suppose there 
is a monotone circuit computing f that contains k AND gates. Then there is a monotone 

circuit computing f that contains k AND gates and at most (k+ l ) (n-1)+ ( k ~  1) 

OR gates (the dual version of  the statement holds as well). 

Proof. Consider a monotone straight-line program for computing f ,  and letf~,f2 . . . .  
.... fk be the k outputs of  the k AND gates, in the order in which they are computed. 
We first prove, by induction on i, that there is a monotone circuit that computes 

J - - x  

f l , J2 ,  • .... f / c o n t a i n i n g / A N D  gates and at most i ( n - 1 ) +  [ ; ]  OR gates. For  i=1 ,  

f~ is an AND of  two operands, each of  which is either a constant or an OR of  a 
subset of  {Xl, x2 . . . . .  x,}. One can easily check that these two operands can be com- 
puted with at most n -  1 OR gates, so the case i=  1 is settled. Assuming the result 
for i - 1 ,  let us prove it for i. The functions f~,fl_ . . . .  ,f~-i can be computed, by the 

induction hypothesis, using i - 1  AND gates and at most ( i - 1 ) ( n - 1 ) +  2 

OR gates. The function f~ is an AND of two operands, each of  which is either a 
constant or an OR of  a subset of  {xl, x~, ..., x,}U {f~,f2 . . . . .  f/_l}. These two oper- 

ands can be computed with at most n+  i -  2 OR gates, and since ( i -  1)( ,7-1)+ "1i21]" 

+ n + i - - 2 = i . ( n - 1 ) + / ~ / ,  the induction step is completed. 



16 N. ALON, R. B. BOPPANA 

Therefore : q , ~  . . . . .  fk can be computed with a monotone circuit containing k 

gates and at most k ( n - 1 ) +  (2 k)  OR gates. "lhe functionfi tself  is either a cons- AND 

tant or an OR of a subset of {xl, x~ . . . .  , x,,}U {f~,f2 . . . .  ,f~} which can be computed 
with at most n + k -  1 additional OR gates. The desired result follows. II 

A quadratic function is a function f o n  n ~  2 variables of  the form 

f ( x )  = V (a u A xi A x j), 
l ~ i < j ~ n  

where the a u are either 0 or 1. Bloniarz [3] shows that most quadratic functions f 
satisfy L + ( f ) =  f2(n"~/log n). Bloniarz also observes that all quadratic functions have 
monotone circuits with only n -  1 AND gates. "l-hus this example shows that Iemma 
3.15 is tight up to a logarithmic factor. 

The next theorem provides almost optimal lower bounds on the number of 
AND gates for CLIQUE(m, s), when s is fixed. 

Theorem 3.16. / f  3 ~ s ~ + l o g  m, then e~'et3' monotone circuit that computes the 
I 

function CLIQUE(m, s) contains at least m~/(8s~-e" log m) ~ AND gates. In particular, 
for each fixed s ~  3, the number of  AND gates in any monotone circuit that computes 
CLIQUE(m, s) is .Q(m~/(log m)~). 

Proof. Suppose this is false, i.e., suppose there is a monotone circuit computing the 
function CLIQUE(m, s) that contains k<nrV(Ss2e ~'log m)" AND gates. 7hen by 
Lemma 3.15, there is also a monotone circuit computing CLIQUE(m, s) that contains 

- < m  s~ OR gates. This contra- 

dicts Lemma 3.14, so our assumption was false and the theorem is proved. II 
It is worth noting that, as is well known ([5], [9]), the nonmonotone circuit 

M m complexity o f C g l Q U E ( m , s ' ) i s  O[ ([[s/3])))=O(m~-sr~/~l), where M ( t ) i s  the 

nonmonotone circuit complexity of Boolean matrix multiplication. Since it is easy 
to check whether or not a graph G contains a triangle by squaring its adjacency matrix, 
the last theorem implies that any monotone circuit that computes the Boolean square 
of  an m by m matrix contains. ~2(m3/(log m) 8) AND ~aates. Better results• • about the 
monotone complexity of matrix multiplication appear in [8], [10J, and [11]. 

4. A better lower bound for an NP problem 

In this section we consider a problem in NP for which we obtain our largest 
lower bound. Andreev [2] had previously given weaker bounds for this problem. 

Let GF(q) denote the finite field with q elements, where q is a prime power. 
Let G=(U,  V , E )  be a bipartite graph with U=GF(q)  and V=GF(q) .  Define 
POLY(q, s) to be the function of  n=q ~ Boolean variables representing the edges of 
G, whose value is 1 iff there is a polynomial p over GF(q) of degree at most s - 1  
such that Vi~U[(i,p(i))EE]. The family of functions {POLY(q, s)} is clearly in 
NP. Andreev [2] showed that for s~ ( l /2 )n l /S / (~  n -  1, the monotone complexity 
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of POLY(q, s) satisfies 

L+(POLY(q,  s)) -> 4 ( s -  1)4(lnn) z] ' 

so that for s=(1/2)na/~/~ln n - 1  Andreev obtains 

L + (POLY (q, s)) = exp (f2(n~/8/l/l-~n)). 

In this section we show that for s=  < (1/2) l/q-~ q, 

L+(POLY(q,  s)) -- qO(~), 

so that for s=(1/2) ~ we have 

L + (POLY (q, s)) = exp ((2 (I/q-ln q)) = exp (f2 (n'/ '  t/1--~n)). 

For fixed s we can show that every monotone circuit computing POLY(q, s) has 
g2(q ~) AND gates. 

Although Andreev's results were proved without using the lattice framework, 
we get better results by defining an appropriate lattice following Razborov's method. 
Our treatment here is analogous to the one given in Section 3. 

4.1. The polynonfial lattice 

Recall that U=GF(q)  and V=GF(q) .  Let l~1  and r be parameters to 
be chosen later. We use the same definition of closed sets as that of  section 3.1 
(except for the technicality mentioned there). Given a collection A of  subsets of  
U×V, define [.41 by [AI={G=(U,V,E): E contains some FCA}. Let g(l)= 
={F~=U×V:IFI<=I}. Define the lattice K(q, r, l) by K(q,r, I)={[AI:A is a dosed 
subset of  g(l)}. The following claim is straightforward to verify. 

Lemma 4.1. K(q, r, l) is a legitimate lattice with lattice operations U and r~ given by 
[AI u [B]= [(A UB)*] and [A l ~ [B]= [A (qB l. 

4.2. Combinatorial iemmas 

We will use the following combinatorial lemmas to prove our lower bounds 
for the function POLY(q, s). 

Lemma 4.2. Let G=(U, V, E) be a random bipartite graph, in which each edge 
appears independently with probability 1 - ~. Suppose A c= g(l) and A ~ F. Then 

Pr IF is contained in E and no set in A is contained in E] <= (1 -  (1 -  e)z),__< (d)~. 

Proof. A ~  F means that there are F1, F~ . . . . .  F, EA satisfying F~, F2 . . . . .  F,~- F. 
Hence 

Pr[F  is contained in E and no set in A is contained in E] ~ Pr[ViFi ~ EIF~  E] 

r 

= HPr[F~ ~ ElfC=E], 
i=1  

2* 
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where the last equality holds since, by the definition of ~-, the events {F~ ~ E] F C E} 
are independent. But 

Pr[F~ ~ E I F ~  El = 1-(1-e) l r , -vl  ~ 1 - ( l - e )  z, 

and we are done. 1 

Lemma 4.3. Let G be as in Lemma 4.1, and suppose CC:8(1). Then 

Pr[G-([C:']-[C1] ~ 27(1-(1-e) t )"  <: 2r~(e/) ". 

Proof. Consider the closure algorithm for going from C to C*. By Lemma 3.5, the 
algorithm terminates in at most 2r t iterations. J-he proof of Lemma 3.7, using Lemma 
4.2 in place of Lemma 3.6, gives the required bound. 1 

4.3. Lower bounds for the polynomial problem 

In this subsection, we give our lower bounds for POLY(q,s), the function 
defined in the beginning of this section. Recall the lattice K(q, r, l) defined in sub- 
section 4.1. 

Theorem 4.4. Let K=K(q, r,l), where l=s and r~q/3+ 1. Set f =  POLY(q, s). 
Then 

~(f, K) _-> rain I,r~-TL-1 -) ' 4r t 1,2s z In q) )" 

Proof. Let t= O(fi K). By definition of :2(f, K), there are M, M1, N~ . . . . .  M t, N,~ K 
satisfying 

f 

(4.1) A(f)  ~ MU ~ b~(M~, N~) 
i = 1  

and 

(4.2) M c A( f )  U 0 ~ (Mi, N~). 
i = 1  

Set M=[A], Mi=[A~], and NI=[B~], where A, Ai, and B~ are closed subsets of 
~q(l). The proof is divided into two cases, depending on M. 

Case 1. M is not the set of  all graphs. 

For a polynomial p over GF(q), the graph corresponding to p is defined to be 
{(i,p(i)): i-(U}. Using (4.1), we will show that t must be large using the following 
two claims. 

Claim ]. M contains at most one-half of  the q~ graphs corresponding to polynomials of 
degree at most s -  1. 

Claim 2. Each 6n(M~, N~) contains at most 3qS-r(t+l)/~l(r - 1)r<l+]) :~1 of the graphs 
corresponding to polynomials of  degree at most s -  1. 

Proof of Claim 1. Notice that, since M is not the set of all graphs, every FCA has 
cardinality at least 1. By Corollary 3.3, the set A has at most ( r -  1) k minimal elements 
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of cardinality k. Each of these is contained in either precisely 0 or precisely qs-k 
graphs corresponding to polynomials of  degree at most s -  1. "[he total number of 
such polynomial graphs contained in M is thus at most 

 =q kfr-ll  
k=1  k=~ t q i 

k=l 

1 
< - - q S .  II 

2 

Proof of Claim 2. This is analogous to the proof of Claim 2 in the proof of Lemma 
3.8. I 

From these two claims we obtain 

1 [  q ]f(l + 1)/21 L f__....~q/.~;]2 

t ~ - f f t ~ _ l )  >= 6 I t - l )  ' 
as needed. 

Case 2. M is the set of  all graphs. 

Using (4.2), we have 
t 

{all g,aphs} c-_ A (.[') U U ,5 u (M,, Ni). 
i=1 

Notice that 6u(M~,Ni)=[C'[I-[CI], where Ci=AiUBi .  Let G be a random 
bipartite graph, with each edge appearing independently with probability 1 -e .  It 
is easy to see that 

Pr[G(A( f ) ]  ~ q~(l-e)q ~ q ' e - %  

so by choosing e = ( s l n q + l n  2)/q~(2slnq)/q ,  this probability is at most 1/2. 
Now by Lemma 4.3, 

Pr[G([C?l-IC~l] :~ 2fl(el)'. 
Thus we have 

which means that 

I ~ l + t ( 2 f l ( ~ / ) ' ) ,  

> i f % l ,  Af q/" 
t = 4 r  ~[el) ~ 4fl 1,2s21nq) " 

"l-hus Case 2 is finished, and the proof of the theorem is complete. I 

As an immediate consequence of  the last theorem, we obtain the following. 

Corollary 4.5. For s<= I/2 l/q-~ q, we have 

L + (POLY(q, s)) = q~('~. 
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Proof. Take r =  [4s In q], and apply q-heorem 4.4 and "Iheorem 2.1. II 

For fixed s we can prove the following. 

Theorem 4.6. For f ixed s, ez'e#3' monotone circuit computing POLY(q, s) must have 
f2(q ~) AND gates. 

Proof. Choose l=s  and r=10s,  and then use the methods of subsection 3.5 
(Theorem 3.16). We omit the details. II 

5. Other Boolean functions 

The known reductions of  the clique function to several other NP-complete 
functions are actually monotone reductions. Therefore the lower bounds for the 
monotone circuit comple~ty of  CLIQUE(m, s) supply exponential lower bounds 
for other Boolean functions. We list below a few simple examples. 

L e t f a n d  g be two monotone Boolean flmctions of  m and n variables respec- 
tively. The function f i s a  monotone projection o f g  (see Valiant [17] and Skyum and 
Valiant [15]) iff there exist al ,  a~ . . . . .  a,,E {0, 1}U {xl, x., . . . . .  x,,,}, such that f =  
=g(crl, a.a . . . .  , a,). Clearly, if f is a monotone projection of  g, then L+(f )  --- L+(g), 
as a lower bound for f implies a lower bound for g. 

denote the monotone function of  {21] Boolean Let HAM(m) variables repre- 

senting a graph on m vertices, whose value is 1 iff the graph contains a Hamiltonian 
circuit. The results of  Valiant [17] imply that, for l ~ s ~ m ,  the function 
CEIQUE(n/ ,s)  is a monotone projection of  HAM(Ink), for some constant k. In 
fact, we can show that CLIQUE(m, s) is a monotone projection of  HAM(25m~-). 
~fherefore, by "Iheorem 3.9, the monotone circuit complexity of  HAM(m) is 
exp (~2(n?ld/(log m)'/a)). 

Let SAT(m) denote the monotone function of2m e variables .x~ . . . . .  x ....... )'n .... 
.... y ...... whose value is 1 iff there is an assignment Zl . . . . .  z,,< {0, 1} such that the 
formula 

~/ [(xuAzj)V(yuA~)I 
i=1 j - -1  

is satisfied. It is easy to show that, for 1--~s~m, the function CLIQUE(m, s) is a 
monotone projection of  SAT(5m~-). ~hus, by ~lheorem 3.9, the monotone circuit 
complexity of  SAT(m) is exp (f2(ml/~/(log m)~/a)). 

Let (7=(V, E) be an undirected graph. A set of  vertices Uc=V is a cortex 
cover of  G if for each edge {i,j} of  E, either i~ U or jC U. Let VC(m, k) denote the 

/ x  

monotone function of  1~;7 / Boolean variables representing a graph G on m vertices, 

whose value is 1 iff (7 does not have a vertex cover of  cardinality k. 

Proposition5.1. For k--m-/¼(,./log,,0./q, the monotone circuit complexity o f  
/ 1  / 

VC(m, k) is exp (g((m/log m)'/a)). 

Proof. Given a function J ' o f  n variables, its dual (denoted by f* )  is the function of  
* ,v . ..., x , )=  q f ( - i x x ,  -ix~., -ix,,). If  f is a morio- n variables defined by f (, l, x. ,  ..., 
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tone function, then its dual f*  is also monotone, and DeMorgan's laws imply that 
L+(f)=L+(f*). Notice that the dual of  VC(m, k) is CLIQUE(m; m-k) ,  since G 
has a vertex cover of cardinality k iff its complement G has a clique of  cardinality 
m - k .  The result now follows from Theorem 3.9. II 

Let D=(V, E) be a directed graph. A set of  vertices Uc=V is a feedback 
vertex cover of D if each directed cycle of D contains some vertex in U. A set of edges 
F c E is a feedback edge cover if each directed cycle of D contains some edge from F. 
Put n=m(m -  1) and let xl,  x2 . . . . .  x, be n Boolean variables representing the edges 
of a directed graph D on m vertices. Let FV(m, k) denote the monotone function of 
Xl; x.,, ..., x, whose value is 1 iff D does not have a feedback vertex cover of cardina- 
lity k. Similarly, let FE(m, k) denote the monotone function of x~, x2 . . . . .  x, whose 
value is 1 if  D does not have a feedback edge cover of  cardinality k. 

Proposition5.2. For k = m - l ~6 (m/log m)2/a 1, the monotone circuit complexities of 

FV(m, k) and FE(m, k) are exp (f2((m/log m)I/3)). 

Proof. The standard reductions of Vertex Cover to Feedback Vertex Cover and to 
Feedback Edge Cover (see for example [1]) are monotone and linear. Thus using 
Proposition 5.1 the proof is complete. 1 

There are several other monotone reductions of  the clique problem to various 
NP-complete problems which yield exponential lower bounds for the monotone 
circuit complexities of the corresponding Boolean functions. As observed by P. 
Frankl, one can also deduce such lower bounds from the proofs of  Lemma 3.8 
and Theorem 3.9. Indeed, these supply lower bounds for any monotone function 

. / 'of  1~ 71 variables representing G=(V,E), whose value is 1 if G is an s-clique, is 
¢" \ 

0 if G is a complete (s - l ) -par t i te  graph, and is arbitrary otherwise. For example, 
if COLOR(m, s) is the function that is 1 iff G is not s-colorable, then for s =  
=[(m/(81ogm)) 2/3 ] the monotone circuit complexity of COLOR(m, s) is at least 
exp (~2((m/log n,)~/~)). 

Razborov [13] obtained an m °-0°g'') lower bound for the monotone circuit 
complexity of the perfect matching function PM (m). This is the Boolean function of  
n = m  ~ variables representing the edges of  a bipartite graph G=(U, V, E) such that 
[UI = ]V I = m, whose value is 1 iff G contains a perfect matching. The nonmonotone 
circuit complexity of PM(m) is actually polynomial, using for example the Hopcroft 
and Karp [7] matching algorithm. So far, we have not been able to improve the 
m ~0°g') lower bound for the monotone circuit complexity of PM(m). It is worth 
noting that Perfect Matching has a monotone, linear reduction to various other 
problems, including Network Flow and Local Connectivity between two vertices in 
a directed graph. Consequently one obtains m e0°g~) lower bounds for the monotone 
circuit complexities of the corresponding functions. 
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